Climate Analysis from Ten Years of Radio Occultation Data

Chi Ao

Jet Propulsion Laboratory

California Institute of Technology, Pasadena

Contributors: Stephen Leroy, Olga Verkhoglyadova, Amanda Hajj, Jonathan Jiang, Tony Mannucci, Hui Su, Chengxing Zhai

CLARREO Science Team Meeting, April 16-18, 2013, Hampton, VA

© 2013 California Institute of Technology. Government sponsorship acknowledged.

Outline

- Monitoring the width of the tropical belt using RO
- 2. Comparison of geopotential heights between RO, reanalyses, and CMIP5 models

Part I

- Monitoring the width of the tropical belt using RO
 - Defining width of the tropics (Hadley circulation) from tropopause height
 - Trends from the past decade
- 2. Comparison of geopotential heights between RO, reanalyses, and CMIP5 models

Motivation

- How does the general circulation change under global warming?
- Observational/modeling evidence suggests that the width of the tropics has been expanding in the past 3 decades.
- Even a small shift of the tropical boundaries can have significant societal impact.
- Considerable uncertainty exists on the magnitude of the expansion and the physical mechanisms.

Observational Metrics

Source: Seidel et al., Nature, 2008

TABLE 1 Estimates of tropical widening (in degrees latitude per decade) from observation-based studies

Study	Indicator	Data	Widening
Rosenlof [13]	Tropical upwelling (60 hPa)	Analyses	3.0
Reichler and Held [14]	Tropopause height	Radiosonde	0.4
	Tropopause height	Reanalyses	0.7
Fu et al. [15]	Tropospheric MSU 0.7 temperatures		0.7
Hudson et al. [16]	Total ozone	TOMS	1.0 (NH only)
Seidel and Randel [17]	Tropopause height	Radiosonde, 1.8–3.1 reanalyses	
Hu and Fu [59]	Outgoing longwave radiation	Various satellite sensors	1.5
	Mean meridional circulation	Reanalyses	1.0
Archer and Caldeira [92]	Jet stream separation	Reanalyses	0.3
Seidel et al. [23]	Jet stream separation	Reanalyses 1.0	

Climate models project only ~ 0.2 deg/decade in the 21st century under an extreme warming scenario (A2)

Source: T. Reichler, Changes in the Atmospheric Circulation as Indicator of Climate Change (2009)

RO Tropopause Data Record

- > 10 yrs of temperature profiles
 - CHAMP (Apr. 2001 Sept. 2008): I s/c, setting only, ~
 200 profiles/day.
 - COSMIC (June 2006 present): 5-6 s/c, setting + rising, ~ 2000 profiles/day.
 - 0.2–0.5 K RMS accuracy in individual profile near the tropopause; < 0.2 K systematic error.
- Compute LRT height from each temperature profile.
- Obtain monthly zonal averages at 5-deg latitude bands.

Defining the Tropical Width with LRT Height

- LRT height in the tropics and extra-tropics have distinctly different values (~ 17 km vs. ~ 10 km).
 - Seidel and Randel [2007]: radiosonde and NCEP reanalysis; based on frequency of high tropopause values per year, uses two subjective criteria (frequency and height thresholds).
 - Birner [2010]: reanalyses; based on frequency distribution of tropopause heights; subjective (one height threshold criterion) and objective methods.
 - Davis and Rosenlof [2012]: reanalyses; based on height distribution;
 subjective (one height threshold) and objective methods.
- We adopt the subjective absolute and relative height threshold definitions used in Davis and Rosenlof [2012].

Davis and Rosenlof [2012] for period of 1979-1999

14

Blue = beginning of period

Changes in ZLRT

from 2002 to 2011

based on linear fits

Green = end of period

Sensitivity to Vertical Resolution & Sampling

- I. The LRT height is known to be sensitive to the vertical resolution of the temperature profile.
 - The results shown were based on I-km vertical smoothing.
 - How would the inferred trends change without vertical smoothing (i.e. 200 m resolution)?
- 2. The transition from CHAMP to COSMIC introduce a significant change in sampling density (10x increase).
 - What if only one COSMIC s/c data was used?

Sensitivity to Vertical Resolution & Sampling

Table 1. Tropical widening rates for different vertical resolution and sampling density.

	1 km, all cosmic	200 m, all cosmic	1 km, cosmic4 only
NH (fix)	0.75 ± 0.50	0.52 ± 0.48	0.75 ± 0.52
SH (fix)	-0.23 ± 0.53	-0.28 ± 0.51	-0.09 ± 0.58
NH (rel)	1.23 ± 0.52	1.12 ± 0.51	1.16 ± 0.55
SH (rel)	0.57 ± 0.70	0.49 ± 0.70	0.64 ± 0.74

Conclusions (Part I)

- GPS RO tropopause heights provide observational monitoring of the tropical width.
- The widening rate is sensitive to the method used to define the tropical boundaries.
 - 0.5° lat/dec difference between the relative and absolute height definitions.
 - Also depends on vertical resolution & sampling, but not too sensitive for the relative height definition.
- A robust widening trend of ~ 0.5–1° lat/dec from 2002–2011 in NH has been detected. However, no statistical significant trend was found in the SH (ozone recovery?).

Part II

- Monitoring the width of the tropical belt using RO
- 2. Comparison of geopotential heights between RO, reanalyses, and CMIP5 models

Data Used

- RO from CHAMP & COSMIC (2002–2011).
- ECMWF Reanalysis Interim and MERRA (2002– 2011).
- 3 CMIP5 models (CCCMA, HadGEM2, GFDL).
 AMIP runs (imposed SST forcing). Overlap period with models is 2002–2008.
- Focus on 200 mb (average T over troposphere).

GPH Uncertainty

- Sampling errors [Leroy et al. 2012]:
 - Tropics: ~2 m (COSMIC), ~6 m (CHAMP)
 - Mid-latitudes: ~6 m (COSMIC), ~14 m (CHAMP)
- Systematic error [Kursinski et al. 1997]:
 - < 5 m at 200 mb

Annual Means (2002-2008)

Seasonal Variability (2002–2008)

Correlation of Monthly Anomalies

Monthly Anomalies (Tropics)

Monthly Anomalies (Mid-Lat)

Conclusions (Part II)

- Geopotential height (200 mb) comparisons between GPS RO with reanalyses and CMIP5 models reveal systematic differences in both seasonal and interannual variabilities.
- RO and reanalyses:
 - Very good agreement (< 10 m). MERRA seasonal variability too large near South Pole.
 - RO produces larger anomalies in the tropics due to incomplete diurnal cycle sampling (CHAMP era).
- RO and models:
 - Good agreement between RO and models in the tropics (driven by imposed SST).
 - Strong disagreement in the extratropics (both seasonal/interannual).